
Adaptive Control of a Self Balancing Robot
with Varying Payloads

Samuel Bednarski, Michael Dermksian, Alanna Mitchell, and Vybhav Murthy
College of Engineering, Mechanical Engineering Department

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract—For systems with time-varying parameters, adaptive
control methods can be used to ensure stability even when these
parameters are unknown. Here we present two adaptive methods,
self tuning regulation and approximate dynamic programming,
to stabilize the two-wheeled self-balancing robot, Tumbller. The
robot is modified to carry a varying number of quarters offset
from its center of gravity. The self tuning regulator with
equilibrium estimation is capable of stabilizing the robot with
up to 21 quarters, both in simulation and experimentally. The
approximate dynamic programming method implemented with
a deep neural network as its value function approximator is
currently capable of stabilizing the robot with up to 8 quarters,
though further model training could improve these results.

I. INTRODUCTION

Adaptive control techniques present an opportunity for
control system engineers to design intelligent systems capable
of handling time-varying changes to the dynamics of the
controlled system. In the real world, many systems have
unpredictable time varying components that may reduce the
effectiveness of or completely invalidate a controller that is
designed assuming time-invariant behavior. As a result, it is
imperative that we have tools that can reduce our reliance on
the time-invariant assumption.

In particular, we address in this paper two techniques
that can be utilized to estimate and appropriately redesign
controllers for unpredictable variations to the parameters of
a system. We investigate the effectiveness of two unique
adaptive control techniques for balancing an inverted cart-
pendulum system with an unknown time-varying offset mass.
The first technique uses recursive least-squares (RLS) to
iteratively identify the model parameters of the robot. A state
feedback gain found through the linear quadratic regulator
(LQR) algorithm is then designed using the parameterized
model to optimally stabilize the unstable system. We refer
to this technique as the Self-Tuning Regulator (STR). The
second technique, which we refer to as Approximate Dynamic
Programming (ADP), assumes that the measured dynamics
will fall within a predetermined set. We utilize a deep neural
network to identify which element of this set most accurately
describes the behavior of the system, and apply an LQR state
feedback controller based on this identification.

Classical approaches to adaptive control are indirect meth-
ods which rely on a system model. These algorithms generally
have two components, model estimation and controller design.

Though this is a widely studied area, applications for self-
balancing robots appear to be limited. Zad and Ulasyar [1]
combine model predictive control with a static Kalman filter
for parameter estimation to achieve adaptive regulation control
of a self-balancing robot. However, their analysis is limited to
a time-invariant system with unknown system parameters, a
limitation imposed by the estimation method. Wu et al. [2]
designed a fuzzy PD controller to achieve robust stabilization
of an uncertain plant model. Robust control in general is an
alternate field of approaches to this problem, but is likely to
have a limited range of feasibility.

More closely related to the approach derived here, Kim
and Ahn [3] apply self-tuning control to achieve adaptive
tracking of a self balancing robot. However, this is only applied
as an outer loop controller, the inner loop is a fixed-gain
LQR controller. This limits how much uncertainty the system
is able to handle. Finally, Anninga [4] implemented a self
tuning regulator by combining pole placement with RLS to
stabilize a self balancing robot with time-varying parameters
such as added mass. However, this implementation is limited
to systems with consistent equilibria, i.e. the additional mass
must be aligned with the existing center of gravity.

ADP has grown over the last two decades with the increas-
ing popularity of neural networks. ADP can be categorized into
four main schemes: a heuristic dynamic programming (HDP),
an action dependent HDP based on Q learning, dual HDP, and
action-dependent dual HDP [5]. Most approximate dynamic
programming approaches considered often take on the form of
an action dependent HDP, with an action-critic neural network
[5] [6]. The actor network approximates the mapping between
states and control input, while the critic network takes the
system as an input and outputs the estimate value function
[6].

Li and Dong [6] propose a data-based scheme to solve the
optimal tracking problem of switching between autonomous
systems. To find the action value function, or Q function, an
iterative algorithm based on ADP is formulated to optimally
determine which modes to switch between [6]. They use a
critic only, linear-in-parameter neural network, to implement
the proposed algorithm. This paper follows suit in using a
critic-only approach to optimally switch between subsystems
and apply corresponding control inputs.

Heydari and Balakrishnan [7] propose a solution to the prob-
lem of optimal switching and control of a non-linear system



using approximate dynamic programming. They propose an
algorithm for switching that determines the optimal cost-to-go
as a function of the current state and the switching times. The
neural network is trained to pre-determine and estimate a value
function for optimal switching through dynamic programming.
A second neural network is used to calculate the optimal
control to be applied for a given region; the conjunction of
the two neural networks being an actor and critic. Similarly,
this paper follows the idea of optimally switching between
subsystems based on the identification of the system, but
explores the use of deep learning to optimally switch between
pre-determined LQR state feedback controllers based on the
identified system dynamics.

II. SYSTEM MODELING

The system is modeled first in its nonlinear form using two
dimensional rigid body dynamics. The simplifying assumption
is made that the robot can only tilt and translate, described
by ψ and x, respectively. The process begins with attaching
reference frames to key portions of the robot as shown in
Fig. 1, where W is the world frame, C the cart frame, P the
pendulum frame, and D the disturbance mass frame. Nonlinear
equations for the dynamics can be derived as the second-order
differential equation

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) = Υ

with q =
[
x ψ

]>
, M(q) is the mass matrix, C(q, q̇) is

the Coriolis matrix, N(q, q̇) is the potential energy terms
matrix, and Υ =

[
F 0

]>
the generalized forces matrix

containing the linear force generated by the motors F . The
conversion between motor voltage and force is made by the
linear approximation

F =
2kT
Rr

V

where kT is the motor torque constant, R is the motor
resistance, r is the wheel radius, and V is the supplied motor
voltage.

Finally, the differential equation is rewritten in the state
space representation ż = f(z, u) by first inverting the mass
matrix M such that

q̈ = M−1(Υ− C(q, q̇)q̇ −N(q, q̇))

The states z are then defined

z =
[
x ẋ ψ ψ̇

]>
Though this nonlinear system definition is useful for real-

istic simulations, it is too complex to be used for controller
design. As the fundamental control approach for this project
is the LQR design, the linearized model of the system is more
useful. Using a first-order Taylor approximation, a linearized
model of the form

ż = Az +Bu

is found at the unstable equilibrium point, where u is the motor
voltage. Full-state feedback is assumed for this system, i.e.

Fig. 1. Coordinate frames, center of mass locations, and system state
definitions for the robot. The dynamic model of the system is derived using
these definitions.

y = z. The structure of the linearized model is the same for
any equilibrium tilt angle, though the values themselves will
differ. For the RLS design, the physical parameters making up
each element of the matrices A and B are grouped together
to form generic parameters θi. Since RLS is a discrete-time
algorithm, a discrete model of the system is needed. To
maintain the simplicity of the parameterized linear model, a
backward difference method is used to convert to a discretized
model.

ż ≈ zk − zk−1
T

zk = (I + TA)zk−1 + TBuk−1

One advantage of the backward difference approximation is
that linearity in the generalized parameters is preserved. This
means the discretized system can be equivalently represented
as

zk = φ>(zk−1, uk−1)θ + δ(zk−1) = φ>k−1θ + δk−1

φk−1 =


0 Tz2[k − 1] 0 0
0 Tz3[k − 1] 0 0
0 0 0 Tz2[k − 1]
0 0 0 Tz3[k − 1]
0 Tu[k − 1] 0 0
0 0 0 Tu[k − 1]



δk−1 =


z1[k − 1] + Tz2[k − 1]

z2[k − 1]
z3[k − 1] + Tz4[k − 1]

z4[k − 1]


III. CONTROLLER DESIGN

A. Self-Tuning Regulator

The first adaptive control method developed for stabilizing
the robot under time-varying payloads is the self tuning
regulator. This is an indirect adaptive method which relies
on an estimate of the plant model to design an appropriate
control method. As the true plant changes over time, the model

2



should update to reflect this, and a more appropriate controller
be designed. The self tuning regulator is composed of model
estimation and control design components. For this, RLS is
used for model estimation and LQR is used for controller
design.

RLS aims to approximate the solution of the least squares
problem of minimizing the prediction cost in terms of the
model parameters

J(θ) =
1

2

N∑
i=0

λN−i(yi − ŷi)2

where
ŷi = φ>(yi−1, ui−1)θ + δ(yi−1)

and λ ∈ (0, 1] is an exponential forgetting factor. The term δ is
an extension of the original algorithm taken from Astrom and
Wittenmark [8] simply accounting for the bias terms which are
not multiplied by any parameter, and is an artifact of main-
taining the continuous-time parameters through the backward
difference approximation. Computing the exact solution to the
least squares problem becomes computationally expensive as
data accumulates, making it infeasible for real-time implemen-
tation. However, it can be recursively approximated with a
constant computational cost through the following algorithm.

Kk = Pk−1φk−1(λI + φ>k−1Pk−1φk−1)−1

Pk = (I −Kkφ
>
k−1)Pk−1λ

−1

θ̂k = θ̂k−1 + ρKk(yk − φ>k−1θ̂k−1 − δk−1)

The scalar ρ is an additional learning rate extension from
the original derivation used to tune how fast or slow the
parameters converge. The algorithm is initialized with θ̂0 set
to the nominal linearized system parameters and P0 = p0I
where p0 is an arbitrarily large constant.

Using the continuous-time linear model estimated through
RLS, a state feedback control law is generated using LQR.
This LQR design step occurs at every sampling period along
with the RLS model update. Every time the parameters are
updated, they are used to generate a new state feedback matrix
which is immediately applied to the online control system for
the next sampling step.

Even though the linear model is a simplification of the true
nonlinear dynamics, the difference is negligible when the robot
is operating correctly near the equilibrium. While the RLS
algorithm is able to estimate the linear model well, it does not
provide any insight as to what the actual equilibrium point
is. Specifically, the equilibrium tilt angle will vary since the
additional weight is offset from the robot’s center of mass,
causing the combined center of mass to shift parallel to the
ground. Even with a perfect system model, LQR alone is
incapable of stabilizing the system if the equilibrium tilt angle
is too far from the center.

To account for this, the equilibrium is separately estimated
from the other system parameters and is used to define the tilt
angle error for state feedback control. Intuitively, assuming the

equilibrium is at the center, then additional mass will cause
the robot to drift forwards. As the robot drifts, the equilibrium
reference can be adjusted until the robot comes to a halt.
This concept is manifested through the addition of reference
dynamics

ṙψ = −α ˙̄x

where ṙψ is the equilibrium reference for the tilt angle, α is
an integration rate, and ˙̄x is an average over a fixed window
of linear velocity samples.

B. Approximate Dynamic Programming

The second adaptive control method implemented to sta-
bilize the Tumbller uses approximate dynamic programming
to accurately predict the robot’s current state in order to
apply a precomputed controller to the feedback system. This
direct adaptive control method incorporates a value function
approximator to predict the current system dynamics. A neural
network consisting of two 2D convolutional layers followed
by two linear layers outputs a probability distribution across
the precomputed system dynamics and tuned controller pairs.
The most likely pair is selected and the appropriate control
value is sent to the motors.

The goal of the neural network, as an approximate value
function, is to accurately predict the correct controller to
apply to the current system without explicit information about
the current mass in the tray. In order to gather additional
information from the four state measurements it sees at each
time step, an additional time dimension is added to the data
and states at the previous 299 time steps are stored and
used as an input to the neural network. Fig. 3 shows the
network architecture. Two-dimensional convolutional layers
in the model use a filter of size (2 x 20) to convolve over
the input. These layers use the time-dimension information to
help determine the most probable current state based on how
the Tumbller’s four states change over time, in addition to
their relationship with each other. Linear layers at the end
of the network reduce the dimensions of the data to the
number of controller state pairs available on the Tumbller
which are considered the output classes. The cross entropy
loss combines softmax and negative log likelihood. Softmax
is used to normalize the final outputs and create a probability
distribution across the output classes. Negative log likelihood
calculates the loss value which is back-propagated through the
model weights using gradient descent during training time. The
size of each layer in the neural network as well as its depth
is limited by the Raspberry Pi’s 1GB RAM. When trained
and validated on data collected on the hardware, the model
achieved a final training accuracy of 97.38% and validation
accuracy of 95.34% after training for 35 epochs, shown in
Fig. 2.

Paired with the output predictions of the neural network
are LQR controllers tuned in MATLAB. With the goal of
robot stabilization, the Q and R matrices are chosen to
place importance on the wheel angle θ. Six LQR controllers
are computed on the continuous state-space, nonlinear-offset

3



Fig. 2. Neural network training statistics. When trained over 35 epochs, the
network reached a final training accuracy of 97.38% and validation accuracy
of 95.34% which was calculated on data samples the network did not evaluate
during training.

Fig. 3. The architecture of the neural network. The front of the network
consists of two 2D convolutional layers to convolve over the time dimension
of the inputs and extract information about the change in states overtime.
The back of the network reduces the dimensions of the data to the output
prediction size of 3. These 3 classes correspond to the 0, 4, and 8 quarter
controllers respectively.

dynamics of the tumbller robot for a given mass in the tray
container (i.e, 0,2,4,6,8,10 quarters in the tray) in MATLAB.
The LQR controllers for each mass evaluate to

K0 Quarters =
[
−0.316 −2.598 113.942 4.866

]
K4 Quarters =

[
−0.316 −2.600 114.451 5.409

]
K8 Quarters =

[
−0.316 −2.602 114.937 5.847

]
It is evident that the gains are quite similar to one another, but
the controllers themselves would be unable to stabilize the
robot with any mass above 6 quarters. The weight offsets the
robot’s center of mass and thus, new equilibrium points are
needed to balance about. The new equilibrium points were
estimated through tuning, i.e. placing the respective amount
of quarters in the mass tray, finding where the robot is in
equilibrium, and writing down the value for theta that it is
at rest. This is beneficial for developing stabilizing controllers
for masses above 6 quarters, as it takes into consideration both
the quarters and the added weight of the Raspberry Pi, which
sits anterior to the mass tray.

IV. SIMULATIONS

For the STR method, the control algorithm was applied in
MATLAB/Simulink to the nonlinear system described above.
This was useful for verifying the original nonlinear model
as well as how additional offset masses affect the dynamics,
and in particular how the equilibrium point shifts. Beyond

verification of the dynamic model, MATLAB simulations
were not utilized for the ADP method. Since ADP is a
direct control method trained on a finite set of LTI system
models, this method was only simulated to verify correctness
of implementation. All results for ADP are from hardware.

A. Self-Tuning Regulator

For the STR method, MATLAB simulations were used to
verify the correctness of implementation as well as determine
how effectively the algorithm is under pseudo-real world
conditions. In addition to the complete nonlinear dynamic
model, other physical nonlinearities including quantization of
the control signal, control saturation, motor dead-band, and
measurement noise are simulated. Measurement noise is added
to each output as white noise. Since STR is an indirect method
dependent upon the plant model, this simulation environment
can provide a baseline for how effective the algorithm should
perform.

Figs. 4, 5, and 6 show the results of applying the STR
algorithm on the nonlinear robot dynamics. At different
points of the simulation, masses simulating those of quar-
ters are added and removed from the robot at an offset.
The simulation parameters are λ = 1, ρ = 1, α = 0.4,
Q = diag(1, 100, 10000, 100), and R = 1. By including the
reference integrator, the robot is able to stabilize around each
equilibrium point. Due to the noise and dead-band included
in the simulation, the robot does not asymptotically converge
to the equilibrium, but rather oscillates within some ultimate
bound.

In simulation, any forgetting factor λ < 1 would destabilize
the system after some time. Even in the real system, the
smallest forgetting factor which preserves stability is around
λ = 0.999. So, the parameters tend to converge close to
their initial values and not change much as masses are added.
Interestingly, some of the parameters tend to converge to

Fig. 4. States x and ψ of the STR system in simulation when applying
periodic changes in mass. The reference integrator allows the system to find
new equilibria with each change in mass.

4



Fig. 5. Parameters θ of the system in simulation when applying periodic
changes in mass. The estimated parameters rarely converge to the true
parameter values.

Fig. 6. State feedback gains K of the STR system in simulation when
applying periodic changes in mass. The feedback gains K2 and K4 show
sharp spikes throughout the simulation.

values very far from the true system parameters even though
the system is still performing well. This is due to the ac-
cumulation of approximations made for the RLS estimation
including linearization and backward difference discretization.
Additionally, RLS is not intended to deal with measurement
noise, which could also be contributing.

Some of the controller gains vary from their original values,
but are all within the same orders of magnitude. When the
offset mass is changed discontinuously, it causes a temporary
spike in the controller gains before they settle again. The RLS
estimation works well for slowly-varying parameters, but has
unpredictable behaviour for fast and discontinuous changes.
Yet, it seems that the controller should still be able to recover
and stabilize the system.

B. Approximate Dynamic Programming

Simulation of the neural network output was performed in
Python using experimentally collected data that the network
had not been exposed to during training, i.e. a test subset.
Separate runs with different mass values were concatenated
together to simulate a step mass change to the system. A se-
quence of 300 time steps was taken as the input to the network
and a moving window captures the sequence, including the
transition states at the simulated step points. The network’s
predictions along with the correct labels corresponding to
the actual number of quarters and corresponding controller
applied were plotted. Every 700 time steps, a new mass and
controller pair were simulated as the robot system. Fig. 7
shows the network’s predictions to the step data. The network
maintains a 99.1% prediction accuracy over these samples and
has difficulty classifying during the transition from one mass
to another, which is illustrated by the blue prediction dots that
are offset from the actual controller trajectory.

V. HARDWARE IMPLEMENTATION AND TESTING

A. Sensing and Actuation

Several sensors and actuators are used on the Tumbller
to ensure complete controllability and observability over the
robot. To control the robot, the original pair of DC gearhead
motors provide torques to the wheels, which directly corre-
spond to friction forces along the ground. Even though there
are two motors enabling the robot to travel anywhere on the
ground, it is assumed that the robot is constrained to a straight
line corresponding to the planar dynamics modeling.

An inertial measurement unit (IMU) containing a triaxial
accelerometer and gyroscope is used to estimate the robot tilt
angle and angular velocity. The angular velocity is measured
directly from the corresponding gyroscope axis, and the tilt
angle is estimated using a complementary filter combining the
accelerometer axes as gravity vectors. The low-pass filtering
of the accelerometer and gyroscope on the IMU is sufficient,
so no additional measurement filtering is used. The IMU
communicates as an I2C slave device.

Fig. 7. Networks trained for differentiating between 0, 2, 4, 6, 8, and 10
quarters as well as 0, 4, and 8 quarters showed high accuracy when predicting
the step change produced by adding either 2 or 4 quarters to the tray for
respective networks. Both networks misclassified points around the step, but
remained accurate for the unchanging systems. The blue dots/lines are the
predictions of the neural network and the red line is the correct corresponding
labels.

5



Fig. 8. Custom PCB with PIC16F15313 8-bit microcontroller used to read
the full motor quadrature. The microcontroller interfaces over I2C.

To measure the linear position and velocity of the robot, the
built-in quadrature encoders on each motor are used. Since the
original robot hardware does not support the full quadrature
interface, a separate interface using a PIC microcontroller was
custom designed to read the full quadrature. This doubles the
measurement resolution from 780 CPR to 1560 CPR and also
provides the true motor direction. The linear velocity is esti-
mated as the backward difference of encoder counts between
samples, and the position is estimated as the Euler integration
of velocity. The PIC encoder interfaces communicate as I2C
slave devices.

B. Computation

The Arduino Nano on board the Tumbller is used to read
the sensor measurements, calculate the state feedback control
law, and apply the control output signal. It acts as the I2C
master for interfacing with the sensors. For both the STR and
ADP methods, the remaining computations are too complex
to be completed on the Arduino. Therefore, a Raspberry Pi
is added to the system to perform larger computations. The
Arduino sends the measured states and applied controls to the
Pi, and the Pi computes the state feedback matrices to be sent
back to the Arduino. The Arduino and Pi communicate over
UART.

For the STR method, the Arduino first reads in a new set
of state feedback gains which the Raspberry Pi has previously
computed. It then reads the sensors and sends the measure-
ments along with the previously applied control value back to
the Pi. During the remainder of the 15 ms sampling period,
the Arduino applies the new state feedback control law while
the Pi is processing the new data. On the Pi, the NumPy

Python library is used to iterate through the RLS parameter
update. This new model is used with the Python Control
Systems Library to solve the infinite-horizon continuous-time
LQR problem to generate a new state feedback gain matrix.
These gains are queued to be read by the Arduino during the
next sampling period. The Arduino also applies the reference
integrator dynamics during this time.

Before the full STR algorithm is run online, the initially de-
signed LQR state feedback gains are used for some time while
the RLS algorithm updates the parameters. Doing this allows
the model parameters to begin converging asymptotically to
their final values before using them to redesign the control law.
This is necessary since for the first few seconds of operation
the parameters tend to change rapidly in an extremely large
range. Giving time for these to converge before using them
for controller updates prevents the system from going unstable
during this time. Additionally, a sinusoidal signal is applied as
a control disturbance during this phase to provide persistent
excitation, ensuring the data is rich enough for the model
parameters to converge quickly.

When testing the STR method on the physical robot, the
controller parameters are set to Q = diag(1, 1, 2.5e6, 1000),
R = 2, λ = 0.999, ρ = 0.1, α = 4e − 5, and a velocity
averaging window length of 8 samples.

For the ADP method, the Arduino initializes the system
by applying the zero-quarter LQR controller to stabilize the
system. The Arduino continuously relays the current state
measurements (linear position, linear velocity, tilt angle, and
tilt velocity) to the Pi at a sampling rate of 10 ms. This ensures
that there is enough time to communicate and allow for the
model to run through the neural network that is on the Pi. On
the Pi, the system initially gathers 300 points of data, the states
of the robot, that act as the sequence that is then fed into the
neural network. The model update is done every 10 timesteps
to reduce computational intensity and lag, with the newest 300
points of data being used for every model update. After the
300 points of data are collected, the model outputs a set of
prediction probabilities that correspond to the probability that
the system is in a given set of dynamics. The highest prediction
probability is taken and then used to select an LQR controller
and reference point adjustment; where the LQR controller and
equilibrium reference points are correlated to one another. The
chosen LQR controller is then multiplied across the states to
retrieve a control input. The control input is then multiplied
by 256

8 in order to convert it into PWM values, and sent back
to the arduino to execute the low level hardware command.

C. Offset Mass Application

The offset mass is applied to the system by placing United
States quarter dollar coins in a receptacle that is attached to the
front of the robot. It can hold up to 21 coins simultaneously,
corresponding to a total of roughly 0.119kg (5.67g per coin).

6



VI. RESULTS

A. Self-Tuning Regulator

Using a combination of the self-tuning regulator and the
equilibrium estimator, the robot is successfully able to balance
upright with 0 - 21 quarters in its tray. This corresponds to
0 - 0.119kg, neglecting the mass of the tray itself. The robot
iteratively adapts the parameters of the system on-line and
simultaneously adapts its equilibrium point to avoid falling.

We find that the parameters to which the RLS algorithm
converges to are highly unpredictable and often nonsensical.
Fig. 9 illustrates this result, showing θn(t) for the system when
zero, four, and eight quarters are placed in the tray. In each
case, the parameters converge to drastically different values
many orders of magnitude higher than their starting estimate.
More surprising, θ2 and θ4 converge to positive values when
zero quarters are applied, but converge to negative values in
the cases of four and eight quarters.

A potential cause of the unpredictable steady-state pa-
rameters may lie in the fact that parameters are treated as
independent values, despite being highly interdependent. Each
parameter represents a non-zero element of the linearized
dynamic matrices A and B, which in turn are complex
polynomial functions of the true system parameters (masses,
moments of inertia, and center of mass positions). The values
of θ should therefore be constrained to change together, rather
than separately. Additionally, unmodeled dynamics such as
motor backlash and sensor biases are likely contributing to
the amount of uncertainty in the measurements. Since RLS
is a deterministic algorithm, the accumulation of uncertainties
can lead the parameter estimation to yield inaccurate results.

It is also apparent from Figs. 10 that during initial esti-
mation, the parameters exhibit transient spikes before settling
at a steady value. This behavior is expected as RLS typically
performs best when parameters change smoothly with time, so
step changes cause unpredictable behavior during parameter

Fig. 9. Parameter estimates computed on the robot for 0, 4, and 8 quarters in
the tray. The parameter estimates converge, but often to nonsensical values.

Fig. 10. Parameter estimates over time for the STR with the reference inte-
grator. Parameters exhibit transient spikes initially before settling. Parameters
continue to update as coins are added

estimation. In our experiments, coins are added in steps,
giving the time-varying parameters sharp discontinuities. To
minimize the impact of this transient behavior, the parameter
learning rate ρ is set to slow down the parameter convergence,
which has been seen to significantly improve the transient
performance. Keeping the state feedback gains constant for
the initial period of time and providing an initial disturbance
to enforce persistent excitation both ensure the robot remains
stable while the parameters settle through the transient stage.

From Figs. 11 and 12 elements of the LQR gain matrix
K also exhibit unpredictable behavior, but are nonetheless
capable of stabilizing the system. Likely, the sharp discon-
tinuities happen with a short enough duration that it does
not immediately destabilize the robot. However, this indicates
that the system, as currently designed, cannot be relied on to
robustly stabilize the system.

We also note that the inclusion of a forgetting factor less
than 1 in the physical robot causes the system to be unstable.
The smallest forgetting factor achieved experimentally was
0.999, which does not allow for very fast exponential decay.
These results can be further supported by the work done
by Fortescue, et al. [9] which indicates that stability is not
guaranteed when RLS utilizes a forgetting factor.

To evaluate the performance of the self-tuning regulator,
we perform two comparisons. First, the system is compared
to an unmodified LQR controller tasked with regulating the
system to the unstable equilibrium z =

[
0 0 0 0

]>
. As

quarters were added one-by-one, the robot began to show
larger oscillation magnitudes. For five or more quarters, the
robot was no longer able to stabilize and crashed forwards.
The standalone LQR controller is incapable of stabilizing
an uncertain mass when this causes the equilibrium itself to
change. Clearly our STR algorithm is able to provide more
stability coverage than the standard LQR controller.

Second, the system is compared to the same LQR controller

7



Fig. 11. Controller gains over time for the the STR with the reference
integrator. The gains exhibit erratic behavior but are nonetheless capable of
stabilizing the system.

Fig. 12. States over time for the STR with the reference integrator. The
system remains stable as the parameter estimates and controller gains adapt.
The system identifies and regulates to a changing reference angle

but with the reference integrator to identify the time-varying
equilibrium point. The state trajectories over time for this
controller can be seen in Fig. 13. With the inclusion of the
reference integrator, the controller was capable of stabilizing
with any number of quarters. As quarters are added, the robot
would drift forward until the new equilibrium was found,
tilting the robot backward until it stabilized. It is expected that
as mass is added, the frequency of oscillation would decrease.
However, the relative mass of the quarters compared to that
of the robot is not enough to observe this.

From this experiment, we notice that the performance of the
fixed-gain LQR compared to the full STR method is nearly
identical. For some quarter values the STR method was able
to truly stabilize the system without any oscillations, however

Fig. 13. States over time for the non-adaptive LQR controller with the
reference integrator. The system is capable of stabilizing for up to 21 coins
without adapting its parameters.

this is likely due to chance since in general it exhibited similar
oscillations to which the fixed-gain method did. Therefore,
it seems that since the additional masses are offset from the
robot centroid, it is the reference integrator which is providing
a majority of the benefits. Though the LQR redesign based
on RLS parameter estimation is updating the state feedback
gains over time, it seems to have much less impact on the
stabilization performance.

B. Approximate Dynamic Programming

Using the pre-trained network of weights for the optimal
switching between subsystems, the robot was able to switch
between subsystems, although inconsistently. The robot was
loaded at the 40th timestep and the 90th time step with 4
quarters each time. The neural network’s task was to identify
and switch between the controllers and reference point of the
0, 4, and 8 quarter dynamics. It should be noted that the
predictions are made every 10 steps of the 10ms main time
loop, so a controller update occurs every 100ms.

The ADP method does not perform as well as expected
given the high validation accuracy of the neural network
outputs. This is most likely due to the hardware and the
inconsistent state information for the same mass/controller
pairs used for training and testing. The difficulty of duplicating
the same scenarios the robot will see at run time was difficult,
even with keeping all conditions the same (i.e. same place
on the carpet, same controllers, same references, and a fully
charged battery). Although there were difficulties, it can be
seen in Fig. 14 that in fact when there were quarters added to
the tray, it was able to identify the gap and be able to switch.
It did not respond as consistently when another 4 quarters
were added for a total of 8 quarters. It was able to recognize
the change in system dynamics and switch to the correct 8
quarter subsystem temporarily, but ultimately reverted back to
predicting the 4 quarter subsystem.

8



Fig. 14. Graph illustrates the prediction labels over the timesteps taken.
ADP was applied to the robot to switch between 0 quarters, 4 quarters and 8
quarters. Circa timestep 40 is when 4 quarters were placed and timestep 90
is when an additional 4 quarters were placed.

In order to get a better look at exactly how the states were
affected and how the stability of the system reacts to ADP,
the states of the system were plotted over the time steps.
Illustrated in Fig. 15, are the side by side profiles of the states
from the implementation of the ADP controller and the non
ADP controller. For the non ADP controller, a consistent zero-
quarter LQR controller and reference was used. Compared to
the ADP controller, the non-ADP controller was more unstable
and oscillated back and forth with larger amplitudes. The
wheel velocity state, which represents how fast the tumbller
is rocking back and forth, on the non-ADP controller is much
more sporatic vs. the ADP controller tumbller. The ADP
controller was able to minimize the rocking back and forth
by being able to switch to a more stable controller, but more
importantly, shift its equilibrium point back so that it would
not oscillate as much.

Fig. 15. The side by side graphs depict the control implementation with
ADP (on the left) and without ADP (on the right) of the states (linear position,
linear velocity, tilt angle, tilt velocity) over the given timesteps. The controller
without ADP is the zero-quarter LQR controller. ADP seems to be able to
switch subsystems enough where it is able to stabilize the changing weights
(0,4,8 quarters) better than a constant LQR controller. Four quarters were
dropped at the 400th timestep and the 900th timestep.

VII. CONCLUSION

At the outset of this investigation, the goal was to imple-
ment and compare the performance of two unique adaptive
control strategies for stabilizing the inverted cart-pendulum
system with an arbitrary offset mass. STR is an indirect
method involving continuous tuning of an optimal regulator
by iteratively estimating parameters of the system, while ADP
is a direct method which bypasses parameter estimation and
directly chooses an optimal controller based on the dynamics
of the system.

The two adaptive algorithms have been evaluated largely
independently, but the results from testing indicate several key
differences in the methods. Both show promise for being able
to stabilize the unstable system in the face of time-varying
parameter changes. However, the recursive least squares algo-
rithm is better suited to slowly changing system dynamics. As
a result, it suffers from transients in plant estimation that may
produce unstable behavior. Additionally, even when it settles
at parameter estimations, it may take many time steps to do so.
In comparison, the ADP approach makes a set of assumptions
about how the dynamics may change in the future, which
leaves it vulnerable to inconsistencies that plague the system
between training data and testing implementation. In contrast
to the STR method, these anticipated changes are capable of
switching control strategies within a single timestep.

Both strategies introduce an added layer of tuning to the
overall control strategy. In the case of the STR, there are
several learning rates, the forgetting factor, and initializations
which have a significant impact on how well the system
performs. Additionally, extra care must be taken with transient
behavior in the parameters and providing persistent excitation
to ensure the parameters used for LQR design are accurate
enough to stabilize the system. For the ADP method, the
use of a neural network for approximating the value function
introduces many weights and network parameters which must
be tuned to ensure accurate training of the model.

Our current set of experiments demonstrate that the STR
strategy with a reference integrator is capable of stabilizing
for the full range of 0-21 coins, while the ADP strategy can
only stabilize for a range of 0-8 coins. However, we believe
that slight changes to the data collection method for neural
network training can increase the stabilizing range of the ADP
method. Training the neural network to classify or predict that
the system has seen a change in mass could improve its perfor-
mance. This can be implemented by collecting experimental
data as mass is added to the tray, as mass in the tray remains
constant, and as mass is removed from the tray and labeling the
data as separate classes “increasing mass”, “constant mass”,
and “decreasing mass”. During runtime, these predictions can
be used to adjust the current controller values appropriately.
Since the ADP method uses LQR controllers tuned for pre-
determined system dynamics based on the expected mass in
the tray, tuning stable controllers for the Tumbller system with
up to 21 quarters could serve as an additional improvement,
allowing it to successfully control this larger mass range.

9



REFERENCES

[1] H. S. Zad and A. Ulasyar, “Adaptive control of self-balancing two-
wheeled robot system based on online model estimation,” in 10th Inter-
national Conference on Electrical and Electronics Engineering), Bursa,
Turkey, Nov. 2017, pp. 876–880.

[2] W. Z. J. Wu and S. Wang, “A two-wheeled self-balancing robot with the
fuzzy pd control method,” Mathematical Problems in Engineering, vol.
2012, 2012.

[3] S. Kim and C. K. Ahn, “Self-tuning position-tracking controller for two-
wheeled mobile balancing robots,” vol. 66, pp. 1008–1012, 2019.

[4] J. R. Anninga, “Implementation of an adaptive controller on a ball
balancing robot,” Master’s thesis, Delft University of Technology, Delft,
NL, 2019.

[5] A. Al-Tamimi and F. Lewis, “Discrete-time nonlinear hjb solution using
approximate dynamic programming: Convergence proof,” in 2007 IEEE
International Symposium on Approximate Dynamic Programming and
Reinforcement Learning, Honolulu, USA, 2007.

[6] X. Li and C. Sun, “Data-based optimal tracking of autonomous nonlinear
switching systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8,
no. 1, 2021.

[7] A. Heydari and S. N. Balakrishnan, “Optimal switching and control of
nonlinear switching systems using approximate dynamic programming,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 25,
no. 6, p. 1106–1117, 2014.

[8] K. H. Astrom and B. Wittenmark, Adaptive Control, 2nd ed. Mineola,
NY: Dover, 2008.

[9] L. S. K. T. R. Fortescue and B. E. Ydstie, “Implementation of self-tuning
regulators with variable forgetting factors,” Automatica, vol. 17, pp. 831–
835, 1981.

10


