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Abstract 

Diabetic Retinopathy (DR) is a complication resulting 

from diabetes in which lesions on the retina form, affecting 

vision. In this paper we apply several existing image 

classification convolutional neural network (CNN) 

architectures to the detection of DR to evaluate their 

capability. We further evaluate breaking the categorical 

classification problem into multiple binary classification 

problems in hopes of increasing the overall model 

performance. We also incorporate image preprocessing 

techniques that aid the CNN’s classification ability.  

Our preliminary results conclude that state of the art 

CNNs, such as VGG16, fall short of being able to fully 

classify all levels of DR, achieving 80% accuracy. To 

combat this, we used binary classification to detect the 

presence of DR, resulting in 97% accuracy. Due to this 

result, we are confident that CNNs can accurately detect 

DR. Finally, we attempted to break the classification down 

further into binary classification of early stage DR versus 

late stage DR, and binary classifications of each subset of 

the early stage and late stage labels. Our results showed 

that while this binary approach improved classification of 

the healthy images, overall, this technique did not improve 

the overall categorical classification of the varying levels 

of DR. 

1. Introduction 

Diabetic Retinopathy (DR) is a complication resulting 

from diabetes in which long term high blood sugar causes 

blood vessels on the retina to become damaged, affecting 

vision. In its early stages, DR has only a mild effect on 

vision, but if allowed to proliferate, DR can eventually lead 

to blindness. Diabetic individuals with either type 1 or type 

2 diabetes are at risk for the development of DR. 

The long-term negative effects can be effectively 

managed and often prevented if presence of the disease is 

detected early. To this end, it is common for diabetic 

individuals to have regular eye examinations at which their 

physician will photograph the rear of the eye (termed the 

fundus). These fundus images can be examined for features 

such as microaneurysms, hemorrhages, hard exudates, and 

soft exudates. Each of these lesions present as discolored 

regions in the fundus image. Examples of these discolored 

regions can be found in Figure 1. 

 
Figure 1: Six fundus images indicating the various image features 

associated with DR. Accessed from [1]. 

 

Convolutional neural networks (CNN) have been shown 

through many experimental findings to be highly capable 

tools for classifying images. CNNs present those interested 

in imaging-based disease diagnosis with a tool for 

automating this task. If a machine learning method can be 

shown to reliably detect the disease, or detect it more 

reliably and at an earlier stage than human clinicians, it has 

the potential to introduce tremendous value to the field of 

diagnostics. In the case of DR, early detection is key to 

preventing the complications that occur as the disease 

proliferates. Additionally, the indicators of the disease 

require trained clinicians to detect, and human error is a 

concern with image-based diagnoses. Highly repeatable 
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machine learning techniques could simultaneously reduce 

the risk of human error and remove the need for high-paid 

skilled labor. This may indirectly reduce the cost of care. 

In this paper, we demonstrate our experiments with 

various CNN models tasked to classify the fundus images 

to identify the level of DR. Through hundreds of trained 

models and various techniques explored as described 

throughout the paper, we achieved successful results in the 

detection of DR as binary classification, and substantial 

results in classifying the images into each specific category, 

or levels of DR. We further explored results of breaking 

down the categorical classification to several binary 

classification problems, to understand the behavior of the 

network in identifying specific levels of DR.  

2. Related Work 

The DR detection task via CNN has been attempted by 

many in the past with varying results. Our work is an 

attempt to replicate their individual results and synthesize 

the techniques of several independent teams. Additionally, 

we attempt to introduce some novel efforts by distributing 

this multi-class classification task across several CNNs. 

Prior efforts for classification of fundus images were 

largely discovered in the meta-analysis presented by 

Alyoubi et al. [1]. This analysis and the works it references 

form the foundational body of work for our experiments. 

Inspiration for the usage of AlexNet and VGG 

architectures comes from Wang et al. [2], Wan et al. [3], 

and Mobeen-ur-Rehman et al. [4]. Inspiration for the usage 

of ResNet architectures comes from Wan et al. [3] and 

Zhang et al. [5]. Image preprocessing techniques were also 

inspired by literature. Our usage of Gaussian filtering and 

CLAHE contrast enhancement was inspired by Yan et al. 

[6] and Wu et al. [7].  

3. Data 

While there are many possible sources of data for fundus 

images, we relied primarily on the Messidor-2 and Kaggle 

datasets, described herein. An acknowledgement must be 

made that the results described can only be as good the 

quality of the dataset on which they are trained. Particularly 

in the case of DR, where fundus images are classified by 

clinicians, any biases that exist in the human-generated 

labels will be transferred to the machine learning model. 

3.1. Messidor-2 [8] [9] 

The Messidor-2 dataset is a collection of 1,748 images 

corresponding to right and left fundus images from 874 

examinations. It is a combination of two groups of images, 

one set from 529 examinations, which comprised the 

original Messidor dataset, and another set of 345 

examinations. This dataset is comprised of very high-

resolution images taken with consistent equipment and field 

of view. These images are almost entirely 2240 x 1488 

pixels each and are full RGB. Labels for the dataset are 

generated by retina specialists and accessed via Kaggle. 

3.2. Kaggle [10]  

The Kaggle dataset is comprised of 88,704 images 

representing a combination of images from the 2015 

Diabetic Retinopathy Detection competition with images 

provided by EyePACS, and images from the APTOS 2019 

Blindness Detection competition. Fundus images within 

this dataset are significantly less consistent in quality and 

framing. These images are also full RGB, but much less 

consistent in size and aspect ratio than Messidor-2, ranging 

from 2612 x 1964 pixels to 221 x 205 pixels. However, the 

overall size of the dataset is attractive as CNNs often 

require large datasets to effectively train. 

A Gaussian filtered subset of this dataset was accessed 

via Kaggle [11]. This dataset consists of 3,632 images with 

a Gaussian filter applied. Labels match the original Kaggle 

dataset.  

 

 

 
Figure 2: (Top Left) Original Image, (Top Right) CLAHE applied, 

(Bottom Left) Gaussian Filter applied, (Bottom Right) CLAHE + 

Gaussian Filter with Color. 

3.3. Image Preprocessing 

The images from the Messidor-2 dataset are similarly 

sized, but the irregularity of the Kaggle datasets forced us 

to preprocess all the images to be the same size. We chose 

to resize all images to be 224 x 224 pixels, as this allowed 

us to use ImageNet weights. The ImageNet weights are sets 

of layer weights used to initialize the training of a new 

CNN, which have been previously generated by training 

various CNN architectures on ImageNet, a large dataset 
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containing over 30,000 classes of images. Also, at this 

resolution, the features associated with varying levels of 

DR are still visible to the human eye. 

After resizing, we applied various filters to the images for 

testing. These include Gaussian filters and contrast limited 

adaptive histogram equalization (CLAHE). These filtered 

images were treated as separate datasets to use for training 

the CNNs, which would be used in comparison with the 

original, non-filtered images. Figure 2 shows the effects of 

applying various image preprocessing techniques to the 

images. 

3.4. Image Augmentations 

Image augmenting is a common strategy in image 

classification to prevent overfitting based on location of 

edges, colors, or other generic features within the picture. 

To this end, images within the training set are flipped, 

rotated, skewed, etc. during the training of the network. 

Throughout our testing, we utilized width shifts, height 

shifts, rotations, brightness alterations, standardization, 

zoom alterations, horizontal flips, and vertical flips. 

4. Methods  

Our team approached this DR classification problem by 

using well-researched image classification networks such 

as AlexNet, VGG16, and ResNet50. These CNNs were 

tested on various datasets (filtered and non-filtered) and 

observations were made. Using these architectures, we 

experienced overfitting and biasing towards specific labels. 

To combat this, we explored the use of various image 

augmentations and image resizing strategies. We also 

attempted to model our own CNN, based on the 

architectures of the above-mentioned networks, by 

modifying various layers and hyperparameters. However, 

we did not achieve any success using our own CNN. 

4.1. AlexNet 

As one of the first highly successful CNNs, AlexNet 

inspired many of the more recent architectures. AlexNet 

contains 5 convolutional layers and 3 fully connected layers 

[12]. ReLU activation functions are used to introduce 

nonlinearity into the system, with the inclusion of dropout 

layers instead of the commonly used L2 regularization to 

prevent overfitting. 

 
Figure 3: Accuracy and loss of the training and validation data for 

AlexNet trained on the Messidor-2 dataset. Despite initially 

regressing together, the train accuracy drives to 100%, while the 

validation accuracy falls to around 35%. 

 

During our experimentation, we trained a generic 

AlexNet model on both the Kaggle and Messidor-2 dataset. 

Loss and accuracy during training can be seen in Figure 3. 

We experienced extreme overfitting with this model. 

Instead of learning the necessary filters and features, 

AlexNet seemed to memorize the images, resulting in a 

significant gap between training and validation accuracies 

and losses.  

We attempted to mitigate this overfitting using image 

augmentation during training. Additionally, different batch 

sizes, loss functions, regularization techniques, and 

adjustable learning rates were utilized to attempt to improve 

accuracy.  Even with these measures, we either experienced 

overfitting, or biasing to the 0 label. In the latter case, due 

to our datasets primarily being composed of healthy images 

(label 0), we found that AlexNet would predict the majority 

of each class as 0 to easily maximize the accuracy. This 

result can be seen in the confusion matrix for training runs, 

seen in Figure 4. Unfortunately, this issue proved hard to 

overcome in AlexNet. 
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Figure 4: AlexNet confusion matrix illustrating the problem of 

biasing towards the 0 label. In this case, AlexNet has been 

training for 30 epochs, with training and validation accuracies of 

around 73.5%.  

4.2. ResNet 

ResNet [13] introduces residual learning in the form of 

shortcut connections and adds more layers to improve 

performance. The shortcut connections perform identity 

mapping to prevent additional parameters from being 

introduced into the model, cutting away computational time 

and increasing accuracy in the process. ResNet models 

range from 18 to 152 layers. Our team implemented the 50-

layer model. ResNet50 consists of a series of convolutional 

layers with the shortcut connections, ending with an 

average pooling and a fully connected layer with a softmax 

function for classification. 

Our results with ResNet were mixed. Like AlexNet, the 

model often overfit to our dataset, albeit with slightly higher 

validation accuracies. About 80% accuracy was achieved 

on our validation set with over 95% train accuracy. 

4.3. VGG 

VGG is another successor to AlexNet created by the 

Visual Geometry Group of Oxford University. Like 

AlexNet, it uses multiple convolutional layers with max 

pooling [14]. The architecture ends with three fully 

connected dense layers with a softmax activation function.  

The VGG architecture is the model we achieved our 

highest success with. We attempted to use VGG19 but were 

not successful in achieving better results than VGG16. 

Using VGG16 initialized with ImageNet weights on the 

Gaussian filtered dataset, we achieved a training and 

validation accuracy of 95+ and 80% respectively for the 0-

4 classification. The training of this VGG model can be 

seen in Figure 5, and the resulting confusion matrix can be 

seen in Figure 6. This specific trial resulted in a CNN that 

was clearly able to discern between label 0 (healthy) and all 

other labels. However, this VGG struggled to differentiate 

between classes 1-4 (varying levels of DR). When 

determining class 0 from the other classes, VGG16 had a 

precision of 96.2%, recall of 98.6%, and F1 score of 

97.45%. 

 

 
Figure 5: (Top) Test and train accuracy of the VGG16 network 

versus epoch number (Bottom) Test and train loss versus epoch 

number. 

 
Figure 6: Confusion matrix for VGG16 trained on all labels 0 – 

4. 
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4.4. Class Separation with Binary Classification 

This VGG result proved that a CNN would potentially be 

able to correctly classify a healthy image, despite struggling 

to discern between the various severities of DR. This result 

also follows those of other groups who have attempted to 

classify DR. Upon further research, we found that others 

had had some success with breaking the dataset into a 

binary classification problem [1].  

In similar fashion, we proceeded to further split this 0-4 

classification problem into multiple sub-classification 

problems using binary classification. Our initial thinking 

was that we would be able to achieve a higher overall 

accuracy.  

To do so, we first split and altered the labels of our data 

to separate into a binary classification. All afflicted cases, 

1-4, were given a new label of 1, while the healthy cases 

remained a 0 label. Using VGG16 and the previously 

mentioned Gaussian filter, we equally split the data points 

between classes and began testing again with all previously 

mentioned augmentations and adaptable variables. Within 

80 epochs, we were able to record a testing and validation 

accuracy of over 96% and 97% respectively. Full depictions 

of the run can be seen below in Figure 7. Given this great 

result, we felt confident that the model alone would be 

suffice when trained professionals were in a pinch. 

 

This high accuracy received on this test alone shows 

promise to be used as an automated retinopathy detection 

program. Catching this disease early for treatment is the 

most important factor for the real-life application of 

retinopathy detection. 

5. Experimental Results 

As discussed in the Methods section, we propose that DR 

can be fully classified using binary classifications to 

differentiate between classes that may be difficult in one-

shot categorical classification. This section will provide a 

look into the various experiments we conducted to reach 

our resulting full binary classification. 

5.1. DR Binary Detection 

The first step in this classification of DR is to perform 

binary classification to determine if the image is healthy 

versus afflicted. We trained this model by combining labels 

1-4 (afflicted) and comparing them to label 0 (healthy), as 

discussed earlier. Using VGG16 initialized with ImageNet 

weights, updated class weights to accommodate for 

imbalance in the data, various data augmentations, and L2 

regularization, trained on the Kaggle gaussian filtered 

dataset, we achieved training and validation accuracies of 

99.4% and 98% respectively. We further identify that our 

binary classification has 98.1% precision, 99% recall, and a 

98.6% F1 score. This is a marginal improvement over the 

prior result when classifying with the full set of labels. 

These results are displayed in Figure 7 and Figure 8. 

 

 
Figure 7: Accuracy and loss vs epoch for binary classification 

between afflicted and unafflicted groups. 

 

 
Figure 8: Confusion matrix for binary classification between 

afflicted and unafflicted groups. 

 

With these preliminary results, we are confident that we 

can discern between healthy and afflicted images. Now, we 

can exclude the healthy labels from further trials, as we can 
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identify them with this model. This leaves the afflicted 

images, labels 1-4, to be classified. 

5.2. Afflicted Categorical Classification 

Given the high accuracy of the binary separation, we can 

now focus on the separation of the four remaining 

unhealthy groups. During this classification between all the 

afflicted cases, 1-4, our team introduced the CLAHE filter 

along with the normal Gaussian filter to enhance visible 

features within the eyes. Given the previous success with 

the VGG architecture, we used it as our main model 

architecture. Unfortunately, the training and validation 

accuracy only resulted in around 75% and 65% 

respectively. The confusion matrix of the validation set, 

seen in Figure 9, gave us intuition on how to proceed. 

Only looking at the training and validation accuracies, 

our network was not very successful at this one-shot 

categorical classification of the afflicted images. However, 

looking at the confusion matrix in Figure 9, it appears the 

network was able to discern between the image either being 

in class 1 or 2, and the image being in class 3 or 4. It 

struggles more when trying to differentiate between 1 and 

2, and between 3 and 4. This could imply that the 

differences of features between cases 1&2 and 3&4 

respectively might not be large or distinct, and thus cause 

the training of the network to suffer. We further investigate 

this classification challenge by using binary classification 

between these sub-groups. 

 

 
Figure 9: Confusion matrix for categorical classification of the 

afflicted images. In this trial, our VGG model struggled overall 

to classify these images correctly, however, it was able to discern 

between classes 1 and 2, and classes 3 and 4, and only struggled 

on the minor differences. 

5.3. Afflicted Binary Classification 

Following our results from categorical classification on 

the afflicted images, we saw that we were able to discern 

between the image either being in class 1 or 2, and the 

image being in class 3 or 4 well, however, we struggled to 

differentiate between 1 and 2, and between 3 and 4. 

Therefore, we will break these all into separate binary 

classification subproblems. 

 

5.3.1 Early Stage DR vs. Late Stage DR 

 

For this trial, we will group classes 1 and 2 as label 0 

(early stage DR), and classes 3 and 4 as label 1 (late stage 

DR). With the same VGG network, preprocessed images, 

and data augmentation, we were able to train a model to 

training and validation accuracies of 98.1% and 80.0%, 

respectively. The training of this model can be seen in 

Figure 10 and the respective confusion matrix can be seen 

in Figure 11. For this binary sub-classification, while 

accuracy is 80%, precision falls to 61.1%, recall falls to 

66%, and the F1 score is 63.5%. 

 

 
Figure 10: Accuracy and loss vs epoch for binary classification 

between early stage and late stage DR groups. 
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Figure 11: Confusion matrix for binary classification between 

early stage and late stage DR groups. 

 

This binary classification trial is very important. We have 

already determined that the image contains signs of DR, 

however, this step will now classify the image between 

early stage DR and late stage DR. Our results show that we 

can classify the majority of images correctly but struggle on 

around 20% of the images. This is a preliminary result, and 

we expect that improvements could be made with further 

tuning of the model. 

 

5.3.2 Early Stage DR Subclassification 

 

For this trial, we will be directly comparing classes 1 

and 2 (early stage DR) to increase the accuracy of our full 

categorical classification of DR. From the previous result, 

we assume that we know that we either have early stage, 

or late stage DR. Using the same model training setup as 

before, we achieved training and validation accuracies of 

96% and 82%, respectively. The model training and 

confusion matrices can be seen in Figure 12 and Figure 

13, respectively. 

 
Figure 12: Accuracy and loss vs epoch for binary classification 

between group 1 and group 2. 

 

 
Figure 13: Confusion matrix for binary classification between 

group 1 and group 2. 

 

5.3.3 Late Stage DR Subclassification 

 

For this trial, we will be repeating 5.3.2, however, 

comparing classes 3 and 4 (late stage DR. From 5.3.1, we 

assume that we know that we either have early stage, or 

late stage DR. Once again, using the same model training 

setup as before, we achieved training and validation 

accuracies of 97% and 57%, respectively. The model 

training and confusion matrices can be seen below in 

Figure 14 and Figure 15, respectively. 
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Figure 14: Accuracy and loss vs epoch for binary classification 

between group 3 and group 4. 

 

 
Figure 15: Confusion matrix for binary classification between 

group 3 and group 4. 

6. Conclusion 

The long-term negative effects of Diabetic Retinopathy 

(DR) can be effectively managed and often prevented if 

presence of the disease is detected early. In this paper we 

applied several existing image classification CNN 

architectures to the detection of DR and evaluated their 

capability, the results of which led us to attempt various 

binary classifications. We also incorporate image 

preprocessing techniques to demonstrate their effectiveness 

in aiding the CNN’s classification ability. 

 During our survey of current CNN architectures, we 

struggled with issues such as overfitting and biasing to the 

0 label. Our best result for 0-4 classification came from 

using the VGG16 network, with data augmentation and L2 

regularization, trained on the Gaussian filtered Kaggle 

dataset. We achieved overall training and validation 

accuracies of 98.1% and 80.0% respectively for categorical 

classification. By looking at the confusion matrix of this 

result, we discovered that our model was able to correctly 

predict 96% of healthy images, with errors from the 

separation between the varying levels of DR. 

 This discovery led us to approach this categorical 

classification problem through multiple binary 

classifications. This allowed us to achieve training and 

validation accuracies of 99.4% and 98% respectively for 

identifying whether a person has some level DR, that is 

classifying between 0 and 1-4. We further identify that this 

binary classification has 99% precision, 96% recall, and a 

97.5% F1 score. Due to these promising results with binary 

classification, we attempted to set up three more binary 

classifications: early stage versus late stage DR, label 1 

versus label 2 (a subset of early stage DR), and label 3 

versus label 4 (a subset of late stage DR). Unfortunately, 

our classification accuracies for each level of DR were not 

significantly changed from our original one-shot 

categorical classification of all labels (0-4). 

 From these preliminary results, we confirm that it is 

possible to use binary classification to accurately detect the 

presence of DR in images. Furthermore, we conclude that 

further dividing the classes into sub-classification problems 

did not lead to noticeable performance gains. Due to the 

time constraints of this project, we were unable to spend 

much time tuning these binary classification models and 

believe that further tuning may lead to performance 

improvements. To determine the true performance gain of 

adding these subclassification steps, we would need to run 

cross-validation studies on the various combinations. 

 Through these difficulties classifying various images in 

the datasets, we have learned some things about DR. Our 

CNNs can detect with a high accuracy whether DR is 

present, however struggle to differentiate between the 

various level of DR (seen in Figure 5). This leads us to 

believe that the presence of DR is not as subtle as the 

variation between levels. Furthermore, in Figure 8, we see 

that we generally can tell the difference between early stage 

DR and late stage DR, but struggle discerning between 

neighboring levels of DR. For further study of classifying 

DR, we believe that setting up a network to look for minor 

differences in features or the number of features may 

perform better than these CNNs like VGG16 that are able 

to classify thousands of vastly different images. 
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7. Individual Contributions 

Over the course of this project, each team member 

contributed in a timely manner for whatever tasks needed 

to get done at that time. Given that project consisted of 

many different datasets and information, everyone did a 

little of everything. Predominately, these tasks consisted 

of research, testing, model improvement, writing, and 

generating figures. Further specification is given below 

7.1. Michael Dermksian 

Contributed a large amount on the research and model 

improvement side of the project. Implemented 

augmentations for improved validation and different ways 

for data import. Created various codes for data sorting and 

preprocessing. Contributed largely on the presentation and 

final project writing. Contributed to testing and modeling.  

7.2. Harsh Dhruva 

  Contributed largely to the investigation and testing of 

different well researched models. Expanded the number of 

well-known CNNs that we tried and researched by 

creating working models. Researched largely into different 

data set and possibilities to overcome overfitting within 

our models. Generated many models, contributed to 

presentation creation and final draft writing.  

7.3. Michael Turski 

Contributed largely to model testing, creation, and 

research for good practices on DR in CNN. Worked 

heavily on comparing between results between modeling, 

created code to supply confusion matrices for each trial, 

generating valuable data on each trial. Contributed to 

presentation and final draft writing  

7.4. Eric Rasmussen 

Contributed largely to data preprocessing and 

augmentation. Created codes for cropping and filtering 

datasets to attempt to increase validation accuracy. 

Contributed to DR research along with best ways to split 

the data in CNN. Contributed to presentation creation and 

final draft writing.  
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